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Abstract

A dissident map on a finite-dimensional euclidean vector space V is
understood to be a linear map η : V ∧V → V such that v, w, η(v∧w) are
linearly independent whenever v, w ∈ V are. This notion of a dissident
map provides a link between seemingly diverse aspects of real geometric
algebra, thereby revealing its shifting significance. While it generalizes
on the one hand the classical notion of a vector product, it specializes
on the other hand the structure of a real division algebra. Moreover
it yields naturally a large class of selfbijections of the projective space
P(V ) many of which are collineations, but some of which, surprisingly,
are not.

Dissident maps are known to exist in the dimensions 0,1,3 and 7
only. In the dimensions 0,1 and 3 they are classified completely and
irredundantly, but in dimension 7 they are still far from being fully
understood. The present article contributes to the classification of
dissident maps on R

7 which in turn contributes to the classification of
8-dimensional real division algebras.

We study two large classes of dissident maps on R7. The first class
is formed by all composed dissident maps, obtained from a vector pro-
duct on R7 by composition with a definite endomorphism. The second
class is formed by all doubled dissident maps, obtained as the purely
imaginary parts of the structures of those 8-dimensional real quadratic
division algebras which arise from a 4-dimensional real quadratic di-
vision algebra by doubling. For each of these two classes we exhibit
a complete but redundant classification, given by a 49-parameter fa-
mily of composed dissident maps and a 9-parameter family of doubled
dissident maps respectively. The problem of restricting these two fa-
milies such as to obtain a complete and irredundant classification arises
naturally. Regarding the subproblem of characterizing when two com-
posed dissident maps belonging to the exhaustive 49-parameter family
are isomorphic, we present a necessary and sufficient criterion. Regar-
ding the analogous subproblem for the exhaustive 9-parameter family
of doubled dissident maps, we present a sufficient criterion which is
conjectured, and partially proved, even to be necessary. Finally we
solve the subproblem of describing those dissident maps which are both
composed and doubled by proving that these form one isoclass only,
namely the isoclass consisting of all vector products on R7.
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1 Introduction

For the readers convenience we summarize from the rudimentary theory of
dissident maps which already has appeared in print those features which the
present article builds upon. For proofs and further information we refer to
[5]–[11].

First let us explain in which sense dissident maps specialize real division
algebras. A dissident triple (V, ξ, η) consists of a euclidean space1 V , a linear
form ξ : V ∧V → R and a dissident map η : V ∧V → V . Each dissident triple
(V, ξ, η) determines a real quadratic division algebra2 H(V, ξ, η) = R × V ,
with multiplication

(α, v)(β,w) = (αβ − 〈v, w〉 + ξ(v ∧ w), αw + βv + η(v ∧w)) .

The assignment (V, ξ, η) 7→ H(V, ξ, η) establishes a functor H : D → Q from
the category D of all dissident triples3 to the category Q of all real quadratic
division algebras.

Proposition 1.1 [8, p. 3162] The functor H : D → Q is an equivalence of
categories.

This proposition summarizes in categorical language old observations made
by Frobenius [12] (cf. [16]), Dickson [4] and Osborn [21]. In order to de-
scribe an equivalence I : Q → D which is quasi-inverse to H : D → Q
we need to recall the manner in which every real quadratic division al-
gebra B is endowed with a natural scalar product. Frobenius’s Lemma
[16, p. 187] states that the set V = {b ∈ B \ (R1 \ {0}) | b2 ∈ R1} of
all purely imaginary elements in B is a linear subspace in B such that
B = R1⊕ V . This decomposition of B determines a linear form % : B → R

1Throughout this article, a “euclidean space” V is understood to be a finite-dimensional
euclidean vector space V = (V, 〈 〉).

2By a “division algebra” we mean an algebra A satisfying 0 < dimA <∞ and having
no zero divisors (i.e. xy = 0 only if x = 0 or y = 0). By a “quadratic algebra” we mean
an algebra A such that 0 < dimA <∞, there exists an identity element 1 ∈ A and each
x ∈ A satisfies an equation x2 = αx+ β1 with coefficients α, β in the ground field.

3A morphism σ : (V, ξ, η) → (V ′, ξ′, η′) of dissident triples is an orthogonal map
σ : V → V ′ satisfying both ξ = ξ′(σ ∧ σ) and ση = η′(σ ∧ σ).
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and a linear map ι : B → V such that b = %(b)1 + ι(b) for all b ∈ B. These
in turn give rise to a quadratic form q : B → R, q(b) = %(b)2 − %(ι(b)2) and
a linear map η : V ∧ V → V, η(v ∧ w) = ι(vw). Now Osborn’s Theorem
[21, p. 204] asserts that B has no zero divisors if and only if q is positive
definite and η is dissident. In particular, whenever B is a real quadratic
division algebra, then its purely imaginary hyperplane V is a euclidean
space V = (V, 〈 〉), with scalar product 〈v, w〉 = 1

2(q(v + w) − q(v) − q(w))
= −1

2%(vw + wv). Finally we define the linear form ξ : V ∧ V → R by
ξ(v ∧w) = 1

2%(vw−wv) to establish a functor I : Q → D, I(B) = (V, ξ, η).

Proposition 1.2 [8, p. 3162] The functor I : Q → D is an equivalence of
categories which is quasi-inverse to H : D → Q.

Combining Proposition 1.1 with the famous theorem of Bott [3] and Milnor
[20], asserting that each real division algebra has dimension 1,2,4 or 8, we
obtain the following corollary.

Corollary 1.3 A euclidean space V admits a dissident map η : V ∧V → V
only if dimV ∈ {0, 1, 3, 7}.

In case dimV ∈ {0, 1}, the zero map o : V ∧ V → V is the uniquely
determined dissident map on V . In case dimV ∈ {3, 7}, the first example
of a dissident map on V is provided by the purely imaginary part of the
structure of the real alternative division algebra H respectively O [18]. This
dissident map π : V ∧ V → V has in fact the very special properties of a
vector product (cf. section 4, paragraph preceding Proposition 4.6). It serves
as a starting-point for the production of a multitude of further dissident
maps, in view of the following result.

Proposition 1.4 [6, p. 19], [8, p. 3163] Let V be a euclidean space, en-
dowed with a vector product π : V ∧ V → V .
(i) If ε : V → V is a definite linear endomorphism, then επ : V ∧ V → V is
dissident.
(ii) If dimV = 3 and η : V ∧ V → V is dissident, then there exists a unique
definite linear endomorphism ε : V → V such that επ = η.

We call composed dissident map any dissident map η on a euclidean space
V that admits a factorization η = επ into a vector product π on V and a
definite linear endomorphism ε of V . By Proposition 1.4(ii), every dissident
map on a 3-dimensional euclidean space is composed. This fact leads to a
complete and irredundant classification of all dissident maps on R

3 [6, p. 21].
What is more, it even leads to a complete and irredundant classification of all
3-dimensional dissident triples and thus, in view of Proposition 1.1, also to
a complete and irredundant classification of all 4-dimensional real quadratic
division algebras. This assertion is made more precise in Proposition 1.5
below, whose formulation in turn requires further machinery.
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First we need to recall the category K of configurations in R
3 which

recurs as a central theme in the series of articles [5]–[11]. Setting T =
{d ∈ R

3 | 0 < d1 ≤ d2 ≤ d3} we denote, for any d ∈ T , by Dd the
diagonal matrix in R

3×3 with diagonal sequence d. The object set K =
R

3 × R
3 × T is endowed with the structure of a category by declaring as

morphisms S : (x, y, d) → (x′, y′, d′) those special orthogonal matrices S ∈
SO3(R) satisfying (Sx, Sy, SDdS

t) = (x′, y′, Dd′). Note that the existence
of a morphism (x, y, d) → (x′, y′, d′) in K implies d = d′. The terminology
“category of configurations” originates from the geometric interpretation of
K obtained by identifying the objects (x, y, d) ∈ K with those configurations
in R

3 which are composed of a pair of points (x, y) and an ellipsoid Ed =
{z ∈ R

3 | ztDdz = 1} in normal position. Then, identifying SO3(R) with
SO(R3), the morphisms (x, y, d)→ (x′, y′, d′) in K are identified with those
rotation symmetries of Ed = Ed′ which simultaneously send x to x′ and y
to y′.

Next we recall the construction G : K → D, associating with any given
configuration κ = (x, y, d) ∈ K the dissident triple G(κ) = (R3, ξx, ηyd)
defined by ξx(v ∧ w) = vtMxw and ηyd(v ∧ w) = Eydπ3(v ∧ w) for all
(v, w) ∈ R

3 × R
3, where

Mx =







0 −x3 x2

x3 0 −x1

−x2 x1 0






,

Eyd = My +Dd =







d1 −y3 y2

y3 d2 −y1

−y2 y1 d3







and π3 : R
3∧R

3→̃R
3 denotes the linear isomorphism identifying the standard

basis (e1, e2, e3) in R
3 with its associated basis (e2 ∧ e3, e3 ∧ e1, e1 ∧ e2) in

R
3 ∧ R

3. Note that π3 in fact is a vector product on R
3, henceforth to be

referred to as the standard vector product on R
3 (cf. section 4, paragraph

preceding Proposition 4.6). We conclude with Proposition 1.4(i) that ηyd
indeed is a dissident map on R

3. Moreover, the construction G : K → D
is functorial, acting on morphisms identically. We denote by D3 the full
subcategory of D formed by all 3-dimensional dissident triples.

Proposition 1.5 [11, Propositions 2.3 and 3.1] The functor G : K → D
induces an equivalence of categories G : K → D3.

Thus the problem of classifying D3/' is equivalent to the problem of de-
scribing a cross-section C for the set K/' of isoclasses of configurations.
Such a cross-section was first presented in [5, p. 17-18] (see also [11, p. 12]).

Let us now turn to composed dissident maps on a 7-dimensional eu-
clidean space. Although here our knowledge is not as complete as in dimen-
sion 3, we do know an exhaustive 49-parameter family and we are able to
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characterize when two composed dissident maps belonging to this family are
isomorphic. This assertion is made precise in Proposition 1.6 below, whose
formulation once more requires further notation.

The object class of all dissident maps E = {(V, η) | η : V ∧ V → V is a
dissident map on a euclidean space V } is endowed with the structure of a
category by declaring as morphisms σ : (V, η) → (V ′, η′) those orthogonal
maps σ : V → V ′ satisfying ση = η′(σ∧σ). Occasionally we simply write η to
denote an object (V, η) ∈ E . By R

7×7
ant ×R

7×7
sympos we denote the set of all pairs

(Y,D) of real 7×7-matrices such that Y is antisymmetric andD is symmetric
and positive definite. The orthogonal group O(R7) acts canonically on the
set of all vector products π on R

7, via σ · π = σπ(σ−1 ∧ σ−1). By Oπ(R
7) =

{σ ∈ O(R7) | σ ·π = π} we denote the isotropy subgroup of O(R7) associated
with a fixed vector product π on R

7. By π7 we denote the standard vector
product on R

7, as defined in section 4, paragraph preceding Proposition 4.6.

Proposition 1.6 [6, p. 20], [8, p. 3164] (i) For each matrix pair (Y,D) ∈
R

7×7
ant ×R

7×7
sympos , the linear map ηY D : R

7 ∧R
7 → R

7, given by ηY D(v ∧w) =
(Y + D)π7(v ∧ w) for all (v, w) ∈ R

7 × R
7, is a composed dissident map

on R
7.

(ii) Each composed dissident map η on a 7-dimensional euclidean space is
isomorphic to ηY D, for some matrix pair (Y,D) ∈ R

7×7
ant × R

7×7
sympos .

(iii) For all matrix pairs (Y,D) and (Y ′, D′) in R
7×7
ant ×R

7×7
sympos , the composed

dissident maps ηY D and ηY ′D′ are isomorphic if and only if (SY S t, SDSt) =
(Y ′, D′) for some S ∈ Oπ7

(R7).

Knowing that all dissident maps in the dimensions 0,1 and 3 are composed
and observing the analogies between dissident maps in dimension 3 and
composed dissident maps in dimension 7, the reader may wonder whether,
even in dimension 7, every dissident map might be composed. This is not
the case! The exceptional phenomenon of non-composed dissident maps,
occurring in dimension 7 only, was first pointed out in [9, p. 1]. Here we
shall prove it (cf. section 4), even though not along the lines sketched in [9].
Instead our proof will emerge from the investigation of doubled dissident
maps, another class of dissident maps which we proceed to introduce.

Recall that the double of a real quadratic algebra A is defined by V(A) =
A×A with multiplication (w, x)(y, z) = (wy−zx, xy+zw), where y, z denote
the conjugates of y, z. The construction of doubling provides an endofunctor
V of the category of all real quadratic algebras, acting on morphisms by
V(ϕ) = ϕ× ϕ .4 In particular, the property of being quadratic is preserved
under doubling. The additional property of having no zero divisors behaves
under doubling as follows.

Proposition 1.7 [7, p. 946] If A is a real quadratic division algebra and
dimA ≤ 4, then V(A) is again a real quadratic division algebra.

4The notation “V” originates from the german terminology “Verdoppelung”.
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A real quadratic division algebra B will be called doubled if and only if it
admits an isomorphism B→̃V(A) for some real quadratic division algebra
A. Moreover, a dissident triple (V, ξ, η) will be called doubled if and only if
it admits an isomorphism (V, ξ, η)→̃IV(A) for some real quadratic division
algebra A. Finally, a dissident map η will be called doubled if and only if it
occurs as third component of a doubled dissident triple (V, ξ, η).

We are now in the position to indicate the set-up of the present article.
In section 2 we prove that the selfmap ηP : P(V )→ P(V ) induced by a dissi-
dent map η : V ∧ V → V , introduced in [6, p. 19] and [8, p. 3163], always is
bijective (Proposition 2.2). We also observe that ηP is collinear whenever η is
composed dissident (Proposition 2.3). In section 3 we exhibit a 9-parameter
family of linear maps Y(κ) : R

7 ∧ R
7 → R

7, κ ∈ K which exhausts all
isoclasses of 7-dimensional doubled dissident maps (Proposition 3.2(i),(ii)).
Regarding the problem of characterizing when two doubled dissident maps
Y(κ) and Y(κ′) are isomorphic, the criterion κ→̃κ′ is proved to be sufficient
(Proposition 3.2(iii)) and conjectured even to be necessary (Conjecture 3.3).
In section 4 we work with the exhaustive family (Y(κ))κ∈K to prove that
Y(κ)P is collinear if and only if κ is formed by a double point in the origin
and a sphere centred in the origin (Proposition 4.5). This implies that the
dissident maps which are both composed and doubled form three isoclasses
only, represented by the standard vector products on R, R

3 and R
7 respec-

tively (Corollary 4.7). In section 5 we make inroads into a possible proof of
Conjecture 3.3 by decomposing the given problem into several subproblems
(Proposition 5.3) and solving the simplest ones among those (Propositions
5.6 and 5.7). A complete proof of Conjecture 3.3 lies beyond the frame of
the present article and is therefore postponed to a future publication. In
section 6 we summarize our results from the viewpoint of the problem of
classifying all real quadratic division algebras (Theorem 6.1). The epilogue
embeds our article into its historical context.

We shall use the following notation, conventions and terminology. We fol-
low Bourbaki in viewing 0 as the least natural number. For each n ∈ N we
set n = {i ∈ N | 1 ≤ i ≤ n}. By R

m×n we denote the vector space of all
real matrices of size m × n. In writing down matrices, omitted entries are
understood to be zero entries. We set R

m = R
m×1. The standard basis in

R
m is denoted by e = (e1, . . . , em), with the sole exception of Lemma 3.1

where we start with e0 for good reasons. The columns y ∈ R
m correspond

to the diagonal matrices Dy ∈ R
m×m with diagonal sequence (y1, . . . , ym).

By 1m =
∑m
i=1 ei we denote the column in R

m all of whose entries are 1,
and by Im = D1m we denote the identity matrix in R

m×m. By M t we mean
the transpose of a matrix M . If M ∈ R

m×n, then we mean by Mi• the i-th
row of M , by M•j the j-th column of M and by Mij the entry of M lying
in the i-th row and in the j-th column. Moreover, M : R

n → R
m denotes

the linear map given by M(x) = Mx for all x ∈ R
n. With matrices of the
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special size 7 × 21 we slightly deviate from this general convention in as
much as we shall, for each Y ∈ R

7×21, denote by Y : R
7 ∧ R

7 → R
7 the

linear map represented by Y in the standard basis of R
7 and an associated

basis of R
7 ∧ R

7, defined in the first paragraph of section 3. Accordingly we
prefer double indices to index the column set of Y ∈ R

7×21. By [v1, . . . , v`]
we mean the linear hull of vectors v1, . . . , v` in a vector space V . By IX

we denote the identity map on a set X. Given any category C for which a
function dim : Ob(C) → N is defined, we denote for each n ∈ N by Cn the
full subcategory of C formed by dim−1(n). Nonisomorphic objects in a ca-
tegory will be called heteromorphic. Two subclasses A and B of a category
C are called heteromorphic if and only if A and B are heteromorphic for all
(A,B) ∈ A× B. We set R>0 = {λ ∈ R | λ > 0}.

2 The selfbijection ηP induced by a dissident map η

Given any dissident map η : V ∧ V → V and v, w ∈ V , we adopt the short
notation vw = η(v ∧ w), vv⊥ = v(v⊥) = {vx | x ∈ v⊥} and λv : V → V ,
x 7→ vx. Note that vv⊥ = v(v⊥ + [v]) = vV = imλv. If v 6= 0, then the
linear endomorphism λv : V → V induces a linear isomorphism v⊥→̃ vv⊥,
by dissidence of η. Because the hyperplane vv⊥ only depends on the line [v]
spanned by v, we infer that each dissident map η : V ∧ V → V induces a
well-defined selfmap ηP : P(V )→ P(V ), ηP[v] = (vv⊥)⊥ of the real projective
space P(V ). The investigation of ηP will be an important tool in the study of
dissident maps η. Our first result in this direction is Proposition 2.2 below.
Preparatory to its proof we need the following lemma.

Lemma 2.1 Let η : V ∧V → V be a dissident map on a euclidean space V .
Then for each vector v ∈ V \ {0}, the linear endomorphism λv : V → V
induces a linear automorphism λv : vv⊥→̃ vv⊥.

Proof. Dissidence of η implies that v 6∈ vv⊥. Accordingly vv⊥ + [v] =
V = v⊥ + [v], and therefore λv(vv

⊥) = λv(vv
⊥ + [v]) = λv(v

⊥ + [v]) =
λv(v

⊥) = vv⊥. Thus the linear endomorphism λv : V → V induces a linear
endomorphism λv : vv⊥ → vv⊥ which is surjective, hence bijective. 2

Proposition 2.2 For each dissident map η : V ∧ V → V on a euclidean
space V , the induced selfmap ηP : P(V )→ P(V ) is bijective.

Proof. Let η : V ∧ V → V be a dissident map. If dimV ∈ {0, 1}, then
ηP is trivially bijective. Due to Corollary 1.3 we may therefore assume that
dimV ∈ {3, 7}.

Suppose ηP is not injective. Then we may choose non-proportional vec-
tors v, w ∈ V such that vv⊥ = ww⊥. Set E = [v, w], H = vv⊥ and
D = E ∩ H. The latter subspace D is non-trivial, for dimension rea-
sons. Choose d ∈ D \ {0} and write d = αv + βw, with α, β ∈ R. Then
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dd⊥ = (αv+ βw)V ⊂ vV +wV = vv⊥ +ww⊥ = H. Equality of dimensions
implies dd⊥ = H. Thus d ∈ dd⊥, contradicting the dissidence of η. Hence
ηP is injective.

To prove that ηP is surjective, let L ∈ P(V ) be given. Set H = L⊥ and
consider the short exact sequence

0 −→ H
ι
−→ V

ψ
−→ L −→ 0

formed by the inclusion map ι and the orthogonal projection ψ. Then the
map α : V → HomR(H,L), v 7→ ψλvι is linear and has non-trivial kernel,
for dimension reasons. Thus we may choose v ∈ kerα \ {0}. Now it suffices
to prove that vv⊥ = H. To do so, consider I = vv⊥ ∩H. The linear endo-
morphism λv : V → V induces both a linear automorphism λv : vv⊥→̃ vv⊥

(Lemma 2.1) and a linear endomorphism λv : H → H (since v ∈ kerα), hence
a linear automorphism λv : I→̃I. If now vv⊥ 6= H, then dim I ∈ {1, 5} and
therefore λv : I→̃I has a non-zero eigenvalue, contradicting the dissidence
of η. Accordingly vv⊥ = H, i.e. ηP[v] = L. 2

Following Proposition 2.2, the natural question arises whether the selfbijec-
tion ηP induced by a dissident map η is collinear.5 The answer turns out
to depend on the isoclass of η only (Lemma 2.3). Moreover, the answer is
positive for all composed dissident maps (Proposition 2.4), while for doubled
dissident maps it is in general negative (Proposition 4.5).

Lemma 2.3 If σ : (V, η)→̃(V ′, η′) is an isomorphism of dissident maps,
then
(i) P(σ) ◦ ηP = η′

P
◦ P(σ), and

(ii) ηP is collinear if and only if η′
P

is collinear.

Proof. (i) For each v ∈ V \{0} we have that (P(σ)◦ηP)[v] = σ((η(v ∧ v⊥))⊥)
= (ση(v ∧ v⊥))⊥ = (η′(σ(v) ∧ σ(v⊥)))⊥ = η′

P
[σ(v)] = (η′

P
◦ P(σ))[v].

(ii) Assume that η′
P

is collinear. Let L1, L2, L3 ∈ P(V ) be given, such
that dim

∑3
i=1 Li = 2. Then dim

∑3
i=1 σ(Li) = 2 and so, by hypothesis,

dim
∑3
i=1 η

′
P
(σ(Li)) = 2. Applying (i) we conclude that dim

∑3
i=1 ηP(Li) =

dim
∑3
i=1 σ(ηP(Li)) = dim

∑3
i=1 η

′
P
(σ(Li)) = 2. So ηP is collinear. Con-

versely, working with σ−1 instead of σ, the collinearity of ηP implies the
collinearity of η′

P
. 2

Proposition 2.4 [6, p. 19], [8, p. 3163] For each composed dissident map
η on a euclidean space V , the induced selfbijection ηP : P(V ) → P(V ) is
collinear. More precisely, the identity ηP = P(ε−∗) holds for any factori-
zation η = επ of η into a vector product π on V and a definite linear
endomorphism ε of V .

5Recall that a selfbijection ψ : P(V ) → P(V ) is called collinear (or synonymously
collineation) if and only if dim(L1 +L2 +L3) = 2 implies dim(ψ(L1)+ψ(L2)+ψ(L3)) = 2
for all L1, L2, L3 ∈ P(V ). Each ϕ ∈ GL(V ) induces a collineation P(ϕ) : P(V ) → P(V ),
P(ϕ)(L) = ϕ(L).

8



3 Doubled dissident maps

The standard basis e = (e1, e2, e3 | e4 | e5, e6, e7) in R
7 gives rise to the

subset {±ei ∧ ej | 1 ≤ i < j ≤ 7} of R
7 ∧ R

7 which after any choice of signs
and total order becomes a basis in R

7∧R
7, denoted by e∧e . We choose signs

and total order such that e ∧ e = (e23, e31, e12 | e72, e17, e61 | e14, e24, e34 |
e15, e26, e37 | e45, e46, e47 | e36, e53, e25 | e76, e57, e65), using the short notation
eij = ei ∧ ej . For each matrix Y ∈ R

7×21 we denote by Y : R
7 ∧ R

7 → R
7

the linear map represented by Y in the bases e and e ∧ e .
To build up an exhaustive 9-parameter family of doubled dissident maps

on R
7 we start from the category K of configurations in R

3, described in the
introduction. For each configuration κ = (x, y, d) ∈ K we set

Y(κ) =









Eyd 0 0 0 I3 0 Eyd

0 −xt 0 −1t3 0 −xt 0

0 Eyd I3 0 0 Eyd 0









,

thus defining the map Y : K → R
7×21. (Recall that Eyd = My + Dd ,

xt = (x1 x2 x3) and 1t3 = (1 1 1). Note that the block-partition of Y(κ)
corresponds to the partitions of e and e∧ e respectively, indicated above by
use of “|”.) Composing Y with the linear isomorphism

R
7×21 →̃ HomR(R7 ∧ R

7,R7), Y 7→ Y ,

we obtain the map

Y : K → HomR(R7 ∧ R
7,R7), Y(κ) = Y(κ) .

Some properties of Y are collected in Proposition 3.2 below. Preparatory to
the proof of that we need the following lemma which analyses the sequence
of functors

I
D7 ←− Q8

↑ V
K −→ D3 −→ Q4

G H

described in the introduction. (Recall that all of the horizontally written
functors G,H and I are equivalences of categories.)

Lemma 3.1 Each configuration κ = (x, y, d) ∈ K determines a 4-dimensio-
nal real quadratic division algebra A(κ) = HG(κ) and an 8-dimensional real
quadratic division algebra B(κ) = V(A(κ)). The latter has the following
properties.
(i) Denoting the standard basis in A(κ) by (e0, e1, e2, e3), the sequence
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b = ((e1, 0), (e2, 0), (e3, 0) | (0, e0) | (0, e1), (0, e2), (0, e3)) in B(κ) is an or-
thonormal basis for the purely imaginary hyperplane V in B(κ).
(ii) The linear form ξ(κ) : V ∧ V → R, ξ(κ)(v ∧w) = 1

2%(vw−wv) depends
on x only and is represented in b by the matrix

X (x) =







Mx 0 0

0 0 0

0 0 −Mx






.

(iii) The dissident map η(κ) : V ∧V → V, η(κ)(v∧w) = ι(vw) is represented
in b and b ∧ b by the matrix Y(κ).
(iv) The orthogonal isomorphism σ : V →̃R

7 identifying b with the standard
basis e in R

7 is an isomorphism of dissident triples

σ : I(B(κ)) = (V, ξ(κ), η(κ)) →̃ (R7,X (x),Y(κ)) ,

where X (x) : R
7 ∧ R

7 → R is given by X (x)(v ∧w) = vtX (x)w.

Proof. (i) The identity element in B(κ) is 1B(κ) = (e0, 0), by construction.
Hence (1B(κ), b1, . . . , b7) = ((e0, 0), . . . , (e3, 0), (0, e0), . . . , (0, e3)) is the stan-
dard basis in B(κ). Again by construction we have that b2i = −1B(κ) for all
i ∈ 7 , and bibj + bjbi = 0 for all 1 ≤ i < j ≤ 7. Hence b is an orthonormal
basis in V .

(ii) By the matrix representing ξ(κ) in b we mean (ξ(κ)(bi∧bj))ij∈72 ∈ R
7×7.

A routine verification shows that ξ(κ)(bi ∧ bj) = X (x)ij holds indeed for all
ij ∈ 72. For example, for all 1 ≤ i < j ≤ 3 we find that ξ(κ)(bi ∧ bj) =
1
2%(bibj − bjbi) = 1

2%((ei, 0)(ej , 0)− (ej , 0)(ei, 0)) = 1
2%((eiej , 0)− (ejei, 0)) =

1
2(ξx(ei ∧ ej)− ξx(ej ∧ ei)) = (Mx)ij = X (x)ij .

(iii) The basis b∧b in V ∧V is understood to arise from b just as e∧e was ex-
plained to arise from e. It is therefore appropriate to index the column set of
Y(κ) by the sequence of double indices I = (23, 31, 12 | 72, 17, 61 | 14, 24, 34 |
15, 26, 37 | 45, 46, 47 | 36, 53, 25 | 76, 57, 65). Accordingly we denote by
Y(κ)hij the entry of Y(κ) situated in row h ∈ 7 and column ij ∈ I. Asser-
tion (iii) thus means that η(κ)(bi∧bj) =

∑7
h=1 Y(κ)hijbh holds for all ij ∈ I.

The validity of this system of equations is checked by routine calculations.
To present a sample, we find that η(κ)(b2∧b3) = ι(b2b3) = ι((e2, 0)(e3, 0)) =
ι(e2e3, 0) = ι((ξx(e2 ∧ e3), ηyd(e2 ∧ e3)), 0) = (ηyd(e2 ∧ e3), 0) = (Eyde1, 0) =
(d1e1 + y3e2 − y2e3, 0) = d1b1 + y3b2 − y2b3 =

∑7
h=1 Y(κ)h23bh .

(iv) The identity I(B(κ)) = (V, ξ(κ), η(κ)) holds by definition of the functor
I. The statements (ii) and (iii) can be rephrased in terms of the identities
ξ(κ) = X (x)(σ ∧ σ) and ση(κ) = Y(κ)(σ ∧ σ), thus establishing (iv). 2

Proposition 3.2 (i) For each configuration κ ∈ K, the linear map Y(κ) is
a doubled dissident map on R

7.
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(ii) Each doubled dissident map η on a 7-dimensional euclidean space is
isomorphic to Y(κ), for some configuration κ ∈ K.
(iii) If κ and κ′ are isomorphic configurations in K, then Y(κ) and Y(κ′)
are isomorphic doubled dissident maps.

Proof. (i) From Lemma 3.1(iv) we know that A(κ) ∈ Q4 such that

(R7,X (x),Y(κ)) →̃ IV(A(κ))

which establishes that Y(κ) is a doubled dissident map.

(ii) For each doubled dissident map η : V ∧ V → V there exist, by de-
finition, an algebra A ∈ Q4 and a linear form ξ : V ∧ V → R such that
(V, ξ, η)→̃IV(A). Moreover, by Propositions 1.1 and 1.5 there exists a con-
figuration κ ∈ K such that A→̃A(κ). Applying the composed functor IV
and Lemma 3.1(iv), we obtain the sequence of isomorphisms

(V, ξ, η) →̃ IV(A) →̃ IV(A(κ)) →̃ (R7,X (x),Y(κ))

which, forgetting about the second components, yields the desired isomor-
phism of doubled dissident maps (V, η) →̃ (R7,Y(κ)).

(iii) Given any isomorphism of configurations κ→̃κ′, we apply the composed
functor IVHG and Lemma 3.1(iv) to obtain the sequence of isomorphisms

(R7,X (x),Y(κ)) →̃ IVHG(κ) →̃ IVHG(κ′) →̃ (R7,X (x′),Y(κ′))

which, forgetting about the second components, yields the desired isomor-
phism of doubled dissident maps (R7,Y(κ)) →̃ (R7,Y(κ′)). 2

We conjecture that even the converse of Proposition 3.2(iii) holds true.

Conjecture 3.3 If κ and κ′ are configurations in K such that Y(κ) and
Y(κ′) are isomorphic, then κ and κ′ are isomorphic.

Denoting by Ed the full subcategory of E formed by all doubled dissident
maps, Proposition 3.2 can be rephrased by stating that the map
Y : K → HomR(R7 ∧ R

7,R7) induces a map Y : K → Ed7 which in turn
induces a surjection Y : K/' → Ed7 /' . The validity of Conjecture 3.3
would imply that Y in fact is a bijection. This in turn would solve the
problem of classifying all doubled dissident maps because, starting from the
known cross-section C for K/' (cf. [5, p. 17-18], [11, p. 12]), we would obtain
the cross-section Y(C) for Ed7 /' .

The obstacle in proving Conjecture 3.3 arises from the fact that the
doubling functor V : Q4 → Q8 indeed is faithful, but not full. Nevertheless
there is evidence for the truth of Conjecture 3.3 (cf. section 5).
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4 Doubled dissident maps η with collinear ηP

While we already know that the object class E d7 is exhausted by a 9-parameter
family (Proposition 3.2), the main result of the present section asserts that
the subclass {(V, η) ∈ Ed7 | ηP is collinear} is exhausted by a single
1-parameter family, and that ηP = IP(V ) holds for each (V, η) in this subclass
(Proposition 4.5). The proof of that rests on a series of four preparatory
lemmas investigating the selfbijection Y(κ)P : P(R7) → P(R7) induced by
the doubled dissident map Y(κ) : R

7 ∧ R
7 → R

7, for any κ ∈ K. The entire
present section forms a streamlined version of [19, p. 8-12].

We introduce the short notation Y(κ)ij = Y(κ)(ei ∧ ej), for all ij ∈ 72.
It relates to the column notation for Y(κ), explained in the proof of Lemma
3.1(iii), through

Y(κ)ij =











Y(κ)•ij if ij ∈ I
0 if i = j

−Y(κ)•ji if ij 6∈ I ∧ i 6= j

Moreover we denote by (v1 : . . . : v7) the line [v] spanned by (v1 . . . v7)
t ∈

R
7 \ {0}.

Lemma 4.1 For each configuration κ = (x, y, d) ∈ K, the selfbijection
Y(κ)P : P(R7)→ P(R7) acts on the coordinate axes [e1], . . . , [e7] as follows.

Y(κ)P[e1] = (y2
1 + d2d3 : y1y2 + y3d3 : y1y3 − y2d2 : 0 : 0 : 0 : 0)

Y(κ)P[e2] = (y1y2 − y3d3 : y2
2 + d1d3 : y2y3 + y1d1 : 0 : 0 : 0 : 0)

Y(κ)P[e3] = (y1y3 + y2d2 : y2y3 − y1d1 : y2
3 + d1d2 : 0 : 0 : 0 : 0)

Y(κ)P[e4] = [e4]

Y(κ)P[e5] = (0 : 0 : 0 : 0 : y2
1 + d2d3 : y1y2 + y3d3 : y1y3 − y2d2)

Y(κ)P[e6] = (0 : 0 : 0 : 0 : y1y2 − y3d3 : y2
2 + d1d3 : y2y3 + y1d1)

Y(κ)P[e7] = (0 : 0 : 0 : 0 : y1y3 + y2d2 : y2y3 − y1d1 : y2
3 + d1d2)

Proof. By definition of Y(κ)P we obtain for each i ∈ 7 that Y(κ)P[ei] =
(Y(κ)(ei ∧ e

⊥
i ))⊥ = [ Y(κ)(ei ∧ ej) ]⊥j∈7\{i} = [ Y(κ)ij ]⊥j∈7\{i} . Reading

off the columns on the matrix Y(κ), the identity Y(κ)P[e4] = [e4] falls out
directly, whereas for all i ∈ 7 \ {4} the calculation of Y(κ)P[ei] quickly boils
down to the formation of the vector product in R

3 of two columns of the
matrix Eyd , resulting in the claimed identities. 2

We introduce the selfmap ?̂ : R
3×3 → R

3×3, M 7→ M̂ on setting

M̂ = (π3(M•2 ∧M•3) | π3(M•3 ∧M•1) | π3(M•1 ∧M•2)) ,

where π3 denotes the standard vector product on R
3 (cf. introduction). In
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particular, every configuration κ = (x, y, d) ∈ K determines a matrix

Êyd =







y2
1 + d2d3 y1y2 − y3d3 y1y3 + y2d2

y1y2 + y3d3 y2
2 + d1d3 y2y3 − y1d1

y1y3 − y2d2 y2y3 + y1d1 y2
3 + d1d2






.

Lemma 4.2 If κ = (x, y, d) ∈ K and K ∈ GL7(R) are related by the identity
P(K) = Y(κ)P , then there exist scalars α, β ∈ R \ {0} such that

K = β







Êyd
α

Êyd






.

Proof. Evaluating P(K) = Y(κ)P in [ei] for any i ∈ 7 , we obtain
[K•i] = P(K)[ei] = Y(κ)P[ei] which, together with Lemma 4.1, implies the
existence of scalars c1, . . . , c7 ∈ R \ {0} such that

K =







Êyd
1

Êyd













c1
. . .

c7






(∗)

Evaluating P(K) = Y(κ)P in [ei + ej ] for any ij ∈ 72 such that i < j, we
obtain

[K•i +K•j ] = P(K)[ei + ej ] = Y(κ)P[ei + ej ]
= (Y(κ)((ei + ej) ∧ (ei + ej)

⊥))⊥

= [ Y(κ)((ei + ej) ∧ (ei − ej)), Y(κ)((ei + ej) ∧ ek) ]⊥k∈7\{i,j}

= [ Y(κ)ij , Y(κ)ik + Y(κ)jk ]⊥k∈7\{i,j} ,

or equivalently

(K•i +K•j)
t(Y(κ)ij | Y(κ)ik + Y(κ)jk)k∈7\{i,j} = 0 (∗)ij

Substituting K•i + K•j by means of (∗), the complicated looking system
of polynomial equations (∗)ij gets a very simple interpretation. Namely,
straightforward verifications show that (∗)ij is equivalent to ci = cj for all
ij ∈ {12, 23, 56, 67}, while (∗)35 is equivalent to c3 = c5 ∧ y2 = 0. Summa-
rizing, we obtain c1 = c2 = c3 = c5 = c6 = c7 which, together with (∗),
completes the proof on setting α = c4

c1
and β = c1. 2

Lemma 4.3 If κ = (x, y, d) ∈ K and K =







Êyd
α

Êyd






∈ GL7(R)

are related by P(K) = Y(κ)P , then (x, y, d) = (0, 0, d113) and K = d2
1 I7 .

Proof. The system of polynomial equations (∗)ij derived in the previous
proof is still valid for each ij ∈ 72 such that i < j. Elimination of α from
(∗)ij for selected values of ij reveals the following conditions imposed on κ.
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(∗)14 implies

{

x2(y
2
1 + d2d3) = y1y3 − y2d2

x3(y
2
1 + d2d3) = −y1y2 − y3d3

(1)
(2)

(∗)24 implies

{

x1(y
2
2 + d1d3) = −y2y3 − y1d1

x3(y
2
2 + d1d3) = y1y2 − y3d3

(3)
(4)

(∗)34 implies

{

x1(y
2
3 + d1d2) = y2y3 − y1d1

x2(y
2
3 + d1d2) = −y1y3 − y2d2

(5)
(6)

(∗)45 implies

{

x2(y
2
1 + d2d3) = −y1y3 + y2d2

x3(y
2
1 + d2d3) = y1y2 + y3d3

(7)
(8)

(∗)46 implies

{

x1(y
2
2 + d1d3) = y2y3 + y1d1

x3(y
2
2 + d1d3) = −y1y2 + y3d3

(9)
(10)

Now (3)+(9) implies x1 = 0 which in turn, combined with (3)+(5), implies
y1 = 0. Similarly (1) ∧ (7) ∧ (6) implies x2 = y2 = 0, and (2) ∧ (8) ∧ (4)
implies x3 = y3 = 0. So x = y = 0.

Evaluating P(K) = Y(κ)P in [
∑4
i=1 ei] and working with (

∑4
i=1 ei)

⊥ =
[e1 − ej , ek] j=2,3,4

k=5,6,7

we obtain, arguing as in the previous proof, the system

(
∑4
i=1K•i)

t(
∑4
i=1(Y(κ)i1 − Y(κ)ij) |

∑4
i=1 Y(κ)ik) j=2,3,4

k=5,6,7

= 0 (∗)4

Reading off the involved columns from the matrices K and Y(κ), and taking
into account that x = y = 0, we find that (∗)4 is equivalent to d2d3 = d1d3 =
d1d2 = α. This proves both d1 = d2 = d3 and K = d2

1 I7 . 2

In addition to the 3 × 3-matrices Mx and Eyd = My + Dd which we so
far repeatedly associated with a given configuration κ = (x, y, d) ∈ K, we
introduce now as well the 3× 3-matrix

Fyd =







d3 − d2 y3 y2

−y3 d3 − d1 −y1

y2 y1 d2 − d1






.

Moreover, with any v ∈ R
7 we associate v<4 = (v1 v2 v3)

t and v>4 =
(v5 v6 v7)

t in R
3.

Lemma 4.4 For each configuration κ = (x, y, d) ∈ K and for each v ∈ R
7,

the following assertions are equivalent.
(i) 〈Y(κ)(u ∧ v), w〉 = 〈u,Y(κ)(v ∧ w)〉 for all (u,w) ∈ R

7 × R
7.

(ii)











Mx v<4 = Mx v>4 = 0
Dy v<4 = Dy v>4 = 0
Fyd v<4 = Fyd v>4 = 0

Proof. The given data κ and v determine a linear endomorphism Y(κ)(v∧?)
on R

7 which is represented in e by a matrix Lκv ∈ R
7×7. Assertion (i) holds if

and only if Lκv is antisymmetric. Writing down Lκv explicitly, a closer look
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reveals (by elementary but lengthy arguments) that Lκv is antisymmetric if
and only if the system (ii) is valid. 2

Proposition 4.5 For each doubled dissident map η on a 7-dimensional eu-
clidean space V and for each configuration κ ∈ K such that η→̃Y(κ), the
following statements are equivalent.
(i) ηP is collinear.
(ii) κ = (0, 0, λ13) for some λ > 0.
(iii) 〈η(u ∧ v), w〉 = 〈u, η(v ∧ w)〉 for all (u, v, w) ∈ V 3.
(iv) ηP = IP(V ) .

Proof. (i)⇒ (ii). If ηP is collinear then Y(κ)P is collinear, by Lemma 2.3(ii).
Hence we may apply the fundamental theorem of projective geometry (cf. [2,
p. 88]) which asserts the existence of an invertible matrix K ∈ GL7(R) such
that P(K) = Y(κ)P . According to Lemma 4.2 we may assume that

K =







Êyd
α

Êyd







for some α ∈ R \ {0}. With Lemma 4.3 we conclude that κ = (0, 0, d113).
(ii) ⇒ (iii). If κ is of the special form (x, y, d) = (0, 0, λ13), then

Mx = Dy = Fyd = 0. Thus (iii) holds for η = Y(0, 0, λ13), by Lemma
4.4. Consequently (iii) also holds for each (V, η) ∈ E d7 admitting an isomor-
phism η→̃Y(0, 0, λ13).

(iii)⇒ (iv). If (V, η) ∈ Ed7 satisfies (iii), then we obtain in particular for
all v ∈ V \ {0} and w ∈ v⊥ that 〈v, η(v ∧ w)〉 = 〈η(v ∧ v), w〉 = 0. This
means η(v ∧ v⊥) = v⊥, or equivalently ηP[v] = [v]. So ηP = IP(V ) .

(iv)⇒ (i) is trivially true. 2

Recall that a vector product on a euclidean space V is, by definition, a linear
map π : V ∧ V → V satisfying the conditions
(a) 〈π(u ∧ v), w〉 = 〈u, π(v ∧ w)〉 for all (u, v, w) ∈ V 3, and
(b) |π(u ∧ v)| = 1 for all orthonormal pairs (u, v) ∈ V 2.
Every vector product is a dissident map. More precisely, the equivalence
of categories H : D → Q (Proposition 1.1) induces an equivalence between
the full subcategories {(V, ξ, η) ∈ D | ξ = o and η is a vector product} and
A = {A ∈ Q | A is alternative} (cf. [18]). Moreover, famous theorems
of Frobenius [12] and Zorn [23] assert that A is classified by {R,C,H,O}
(cf. [16],[17]). Accordingly there exist four isoclasses of vector products
only, one in each of the dimensions 0,1,3 and 7. We call standard vector
products the chosen representatives πm : R

m ∧ R
m → R

m, m ∈ {0, 1, 3, 7},
defined by π0 = o, π1 = o, (π3(e2∧ e3), π3(e3 ∧ e1), π3(e1∧ e2)) = (e1, e2, e3)
and π7 = Y(0, 0, 13).

Proposition 4.6 For each doubled dissident map η on a 7-dimensional eu-
clidean space V and for each configuration κ ∈ K such that η→̃Y(κ), the
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following statements are equivalent.
(i) η is composed.
(ii) κ = (0, 0, 13).
(iii) η is a vector product.

Proof. (i)⇒ (ii). If η admits a factorization η = επ into a vector product
π on V and a definite linear endomorphism ε of V , then ηP = P(ε−∗) is
collinear, by Proposition 2.4. Applying Proposition 4.5 we conclude that
κ = (0, 0, λ13) for some λ > 0 and ηP = IP(V ). Hence ε = µIV for some
µ ∈ R \ {0}, and therefore η = µπ →̃ Y(0, 0, λ13). Accordingly we obtain
for all 1 ≤ i < j ≤ 7 that |Y(0, 0, λ13)(ei∧ej)| = |µ|. Special choices of (i, j)
yield λ = |Y(0, 0, λ13)(e1 ∧ e2)| = |µ| = |Y(0, 0, λ13)(e3 ∧ e4)| = 1, proving
that κ = (0, 0, 13).

(ii) ⇒ (iii). If κ = (0, 0, 13), then we derive with Lemma 3.1 the se-
quence of isomorphisms

(V, o, η) →̃ (R7, o,Y(0, 0, 13)) →̃ I(B(0, 0, 13)) →̃ I(O).

Because O is a real alternative division algebra, η is a vector product (cf. [18]).
(iii)⇒ (i) is trivially true, since η = IV η. 2

Corollary 4.7 The class of all dissident maps on a euclidean space which
are both composed and doubled coincides with the class of all vector products
on a non-zero euclidean space. This object class constitutes three isoclasses,
represented by the standard vector products π1, π3 and π7.

Proof. Let η be a dissident map on V which is both composed and dou-
bled. Being doubled dissident means, by definition, that (V, ξ, η)→̃IV(A)
for some linear form ξ : V ∧ V → R and some real quadratic division al-
gebra A. Since dimV ∈ {0, 1, 3, 7} and dimA ∈ {1, 2, 4, 8} are related by
dimV = 2dimA− 1, we infer that dimV ∈ {1, 3, 7} and dimA ∈ {1, 2, 4}.
If dimV = 1, then (V, ξ, η)→̃(R1, o, π1) holds trivially. With Proposition 1.1
we conclude that {C} classifies Q2. Hence if dimV = 3, then

(V, ξ, η) →̃ IV(C) →̃ I(H) →̃ (R3, o, π3) .

Finally if dimV = 7, then we conclude with Proposition 4.6 directly that η
is a vector product.

Conversely, let π be a vector product on a non-zero euclidean space V .
Then π = IV π is trivially composed dissident. Moreover B = H(V, o, π) is a
real alternative division algebra such that dimB ≥ 2. Hence B is isomorphic
to one of the representatives C = V(R), H = V(C) or O = V(H). Accor-
dingly (V, o, π) →̃ IH(V, o, π) →̃ IV(A) for some A ∈ {R,C,H}, proving
that π also is doubled dissident. 2

Let us record two interesting features that are implicit in the preceding
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results. Whereas η composed dissident always implies ηP collinear (Propo-
sition 2.4), the converse is in general not true. Namely each of the dou-
bled dissident maps Y(0, 0, λ13), λ > 0 induces the collinear selfbijection
Y(0, 0, λ13)P = IP(R7) (Proposition 4.5), while Y(0, 0, λ13) is composed dissi-
dent if and only if λ = 1 (Proposition 4.6).

Moreover we have already obtained two sufficient criteria for the hetero-
morphism of doubled dissident maps, in terms of their underlying configu-
rations.
(1) If κ ∈ K \ {(0, 0, λ13) | λ > 0}, then Y(κ) 6→̃Y(0, 0, λ13) for all λ > 0.
(2) If λ ∈ R>0 \ {1}, then Y(0, 0, λ13) 6→̃Y(0, 0, 13).
Indeed, (1) follows from Proposition 4.5 and Lemma 2.3(ii), while (2) fol-
lows from Proposition 4.6. The next section is devoted to refinements of the
sufficient criteria (1) and (2).

5 On the isomorphism problem for doubled dissi-

dent maps

With any dissident map η on a euclidean space V we associate the subspace
Vη = {v ∈ V | 〈η(u ∧ v), w〉 = 〈u, η(v ∧ w)〉 for all (u,w) ∈ V 2} of V .
Dissident maps (V, η) with Vη = V are called weak vector products [9]. In
general, the subspace Vη ⊂ V measures how close η comes to being a weak
vector product. The investigation of Vη proves to be useful in our search for
refined sufficient criteria for the heteromorphism of doubled dissident maps.

Lemma 5.1 Each isomorphism of dissident maps σ : (V, η)→̃(V ′, η′) in-
duces an isomorphism of euclidean spaces σ : Vη→̃V

′
η′ .

Proof. Let σ : (V, η)→̃(V ′, η′) be an isomorphism of dissident maps. If
v ∈ Vη, then we obtain for all u,w ∈ V the chain of identities

〈η′(σ(u) ∧ σ(v)), σ(w)〉′ = 〈ση(u ∧ v), σ(w)〉′ = 〈η(u ∧ v), w〉
‖

〈σ(u), η′(σ(v) ∧ σ(w))〉′ = 〈σ(u), ση(v ∧ w)〉′ = 〈u, η(v ∧w)〉

which proves that σ(v) ∈ V ′
η′ . So σ induces a morphism of euclidean spaces

σ : Vη → V ′
η′ . Applying the same argument to σ−1 : (V ′, η′)→̃(V, η), we find

that the induced morphism σ : Vη → V ′
η′ is an isomorphism. 2

We proceed by determining the subspace R
7
Y(κ) ⊂ R

7, for any configuration

κ ∈ K. The description of the outcome will be simplified by partitioning K
into the pairwise disjoint subsets
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K7 = {(x, y, d) ∈ K | x = y = 0 ∧ d1 = d2 = d3},
K31 = {(x, y, d) ∈ K | x 6= 0 ∧ y = 0 ∧ d1 = d2 = d3},
K32 = {(x, y, d) ∈ K | x1 = x2 = 0 ∧ y = 0 ∧ d1 = d2 < d3},
K33 = {(x, y, d) ∈ K | x2 = x3 = 0 ∧ y = 0 ∧ d1 < d2 = d3},
K34 = {(x, y, d) ∈ K | x ∈ [xyd] ∧ y = ±%de2 ∧ d1 < d2 < d3},
K1 = K \ (K7 ∪ K31 ∪ K32 ∪ K33 ∪ K34),

where in the definition of K34 we used the notation xyd = (−y2 0 d3 − d2)
t

and %d =
√

(d3 − d2)(d2 − d1). We introduce moreover the linear injections
ι<4 : R

3 → R
7, ι<4(x) =

∑3
i=1 xiei and ι>4 : R

3 → R
7, ι>4(x) =

∑3
i=1 xie4+i

identifying R
3 with the first respectively last factor of R

3 × R× R
3 = R

7.

Lemma 5.2 The subspace R
7
Y(κ) ⊂ R

7, determined by any configuration

κ = (x, y, d) ∈ K, admits the following description.

(i) If κ ∈ K7 then R
7
Y(κ) = R

7.

(ii) If κ ∈ K31 then R
7
Y(κ) = [ι<4(x), e4, ι>4(x)].

(iii) If κ ∈ K32 then R
7
Y(κ) = [e3, e4, e7].

(iv) If κ ∈ K33 then R
7
Y(κ) = [e1, e4, e5].

(v) If κ ∈ K34 then R
7
Y(κ) = [ι<4(xyd), e4, ι>4(xyd)].

(vi) If κ ∈ K1 then R
7
Y(κ) = [e4].

Proof. The statements (i)–(vi) are easy consequences of Lemma 4.4, by
straightforward linear algebraic arguments. 2

Let us introduce the map δ : K → {0, 1, . . . , 7}, δ(κ) = dim R
7
Y(κ) . Moreover

we set K3 =
⋃4
i=1K3i .

Proposition 5.3 (i) The image and the nonempty fibres of δ are given by
imδ = {1, 3, 7} and δ−1(m) = Km for all m ∈ {1, 3, 7}.
(ii) If κ and κ′ are configurations in K such that Y(κ) and Y(κ′) are iso-
morphic, then {κ, κ′} ⊂ Km for a uniquely determined index m ∈ {1, 3, 7}.

Proof. (i) can be read off directly from Lemma 5.2.
(ii) If κ, κ′ ∈ K satisfy Y(κ)→̃Y(κ′), then we conclude with Lemma 5.1 that
δ(κ) = dim R

7
Y(κ) = dim R

7
Y(κ′) = δ(κ′). Setting m = δ(κ) = δ(κ′) we obtain

by means of (i) that Km = δ−1(δ(κ)) = δ−1(δ(κ′)), hence {κ, κ′} ⊂ Km. The
uniqueness of m follows again from (i). 2

Proposition 5.3(ii) decomposes the problem of proving Conjecture 3.3 into
the three pairwise disjoint subproblems which one obtaines by restricting
K to the subsets K1,K3 and K7 respectively. In the present article we
content ourselves with solving the subproblem given by K7 (Proposition
5.6), along with a slightly weakened version of the subproblem given by
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K31 (Proposition 5.7). The proofs of Propositions 5.6 and 5.7 make use of
the preparatory Lemmas 5.4 and 5.5 which in turn rest upon the following
elementary observation.

Given any configuration κ ∈ K and any vector v ∈ R
7
Y(κ) \{0}, the linear

endomorphism Y(κ)(v∧?) of R
7 has kernel [v] and induces an antisymmetric

linear automorphism of v⊥. Accordingly there exist an orthonormal basis b
in R

7 and an ascending triple t of positive real numbers 0 < t1 ≤ t2 ≤ t3
such that Y(κ)(v∧?) is represented in b by the matrix

Nt =

























0
0 −t1
t1 0

0 −t2
t2 0

0 −t3
t3 0

























.

Here t ∈ T (see introduction) is uniquely determined by the given data
κ ∈ K and v ∈ R

7
Y(κ) \ {0}. We express this by introducing for any κ ∈ K

the map τκ : R
7
Y(κ) \ {0} → T , τκ(v) = t.

Lemma 5.4 Let κ and κ′ be configurations in K. If σ : Y(κ)→̃Y(κ′) is an
isomorphism of dissident maps, then the identity τκ′σ(v) = τκ(v) holds for
all v ∈ R

7
Y(κ) \ {0}.

Proof. Let κ, κ′ ∈ K and let σ : Y(κ)→̃Y(κ′) be an isomorphism of dissident
maps. Then σ induces a bijection σ : R

7
Y(κ) \ {0} →̃ R

7
Y(κ′) \ {0}, by Lemma

5.1. Given v ∈ R
7
Y(κ) \ {0}, set τκ(v) = t. This means that the linear endo-

morphism Y(κ)(v∧?) of R
7 is represented in some orthonormal basis b in

R
7 by Nt . Accordingly the linear endomorphism Y(κ′)(σ(v)∧?) of R

7 is
represented in the orthonormal basis σ(b) = (σ(b1), . . . , σ(b7)) in R

7 by Nt

as well. Hence τκ′σ(v) = t = τκ(v). 2

In order to exploit Lemma 5.4 we need explicit descriptions of the maps
τκ. These we shall attain as follows. Given κ ∈ K and v ∈ R

7
Y(κ) \ {0},

we denote by Lκv the antisymmetric matrix representing Y(κ)(v∧?) in the
standard basis of R

7. Subtle calculations with L2
κv will reveal the eigenspace

decomposition of v⊥ with respect to the symmetric linear automorphism
which Y(κ)(v∧?)2 induces on v⊥. This insight being obtained, the aspired
explicit formula for τκ(v) falls out trivially. The two cases to which we
restrict ourselves in the present article are covered by the following lemma.

Lemma 5.5 If κ = (x1e1, 0, λ13) ∈ K with x1 ≥ 0 and v ∈ R
7
Y(κ) \{0}, then

τκ(v) =

{

(ε, ε, |v|) if 0 < λ ≤ 1
(|v|, ε, ε) if 1 ≤ λ <∞

,
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where ε =
√

λ2(|v<4|2 + |v>4|2) + v2
4 .

Proof. If κ and v are given as in the statement, then

Lκv =







λMv<4
−v>4 v<4I3 − λMv>4

−(v>4)
t 0 −(v<4)

t

−v4I3 − λMv>4
v<4 −λMv<4






.

Observing that Mab = π3(a ∧ b) for all a, b ∈ R
3 and using both Graßmann

identity and Jacobi identity for π3, one derives the identity (∗)

L2
κvw = −ε2w + (1− λ2)






w4(v4v − |v|

2e4) +

∣

∣

∣

∣

∣

v<4 w<4

v>4 w>4

∣

∣

∣

∣

∣







v>4

0
−v<4













for all w ∈ v⊥, where

∣

∣

∣

∣

∣

v<4 w<4

v>4 w>4

∣

∣

∣

∣

∣

= 〈v<4, w>4〉−〈v>4, w<4〉 . Denote by Eα

the eigenspace in v⊥ corresponding to a nonzero eigenvalue α of L2
κv. The

eigenspace decomposition of v⊥ with respect to L2
κv is now easily read off

from (∗). If λ = 1 or v ∈ [e4] \ {0}, then v⊥ = E−|v|2 . If λ 6= 1 and v 6∈ [e4],

then v⊥ = E−|v|2 ⊕E−ε2 , where E−|v|2 = [v4v− |v|
2e4, ι<4(v>4)− ι>4(v<4)]

is 2-dimensional. This information results in the claimed description of
τκ(v). 2

Proposition 5.6 If κ = (0, 0, λ13) and κ′ = (0, 0, λ′13) are configurations
in K7 such that the dissident maps Y(κ) and Y(κ′) are isomorphic, then
λ = λ′.

Proof. Let κ and κ′ be given as in the statement and let σ : Y(κ)→̃Y(κ′) be
an isomorphism of dissident maps. We may assume that λ′ 6= 1. Applying
Lemma 5.4 and Lemma 5.5 to v = e4 we obtain τκ′σ(e4) = τκ(e4) = (1, 1, 1).
This implies σ(e4) = ±e4 and hence σ(e⊥4 ) = e⊥4 . Applying the same two
lemmas now to any v ∈ e⊥4 with |v| = 1, we deduce that {1, λ} = {1, λ′},
hence λ = λ′. 2

Proposition 5.7 If κ = (x, 0, λ13) and κ′ = (x′, 0, λ′13) are configurations
in K31 such that the dissident triples (R7,X (x),Y(κ)) and (R7,X (x′),Y(κ′))
are isomorphic, then κ and κ′ are isomorphic.

Proof. Let F : K → D7 be the composed functor F = IVHG (cf. intro-
duction) and recall from Lemma 3.1(iv) that F(κ)→̃(R7,X (x),Y(κ)) holds
for all κ = (x, y, d) ∈ K. If in particular κ = (x, 0, λ13) ∈ K31, then we
choose κn = (|x|e1, 0, λ13) ∈ K31 as its normal form. Any R ∈ SO3(R)
with Rx = |x|e1 is an isomorphism R : κ→̃κn in K, determining an isomor-
phism F(R) : F(κ)→̃F(κn) in D7. This observation reduces the proof of
Proposition 5.7 to the special case where both κ and κ′ are in normal form.
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So let κ = (x, 0, λ13) and κ′ = (x′, 0, λ′13) be configurations in K31

satisfying x = x1e1 with x1 > 0 and x′ = x′1e1 with x′1 > 0. Moreover,
let σ : (R7,X (x),Y(κ))→̃(R7,X (x′),Y(κ′)) be an isomorphism of dissident
triples, i.e. an isomorphism of dissident maps σ : Y(κ)→̃Y(κ′) which in
addition satisfies X (x) = X (x′)(σ ∧ σ). Applying Lemma 5.4 and Lemma
5.5 just as in the previous proof, the first property implies λ = λ′. The
second property is equivalent to SX (x)S t = X (x′), where S ∈ O7(R) is the
matrix representing σ in e . Accordingly the eigenvalues of X (x)2 and the
eigenvalues of X (x′)2 coincide. In view of Lemma 3.1(ii) this means that
{0,−x2

1} = {0,−(x′1)
2}, hence x1 = x′1. 2

6 On the classification of real quadratic division

algebras

So far we strongly emphasized the viewpoint of dissident maps. However, in
view of Proposition 1.1, any insight gained into dissident maps entails insight
into real quadratic division algebras. Let us now bring in the harvest and
summarize what the results of the previous sections mean for the problem
of classifying all real quadratic division algebras.

To this end we need to introduce more terminology and notation. Let
B be a real quadratic division algebra, with corresponding dissident triple
I(B) = (V, ξ, η) (cf. introduction). We call B disguised doubled in case η is
doubled, and we call B composed in case η is composed. Furthermore we
denote by Qd8,Q

dd
8 and Qc8 respectively the full subcategories of Q8 formed

by all objects B ∈ Q8 which are doubled, disguised doubled and composed
respectively. These full subcategories are partially ordered under inclusion,
with inclusion diagram

Q8

↗ ↖

Qdd8 Qc8
↑
Qd8

Moreover, these full subcategories occur as codomains of dense functors
Fd : K → Qd8 , F

dd : R
7×7
ant × K → Q

dd
8 and F c : L → Qc8 which we proceed

to describe.
The composed functor VHG : K → Q8 (cf. introduction) induces a dense

and faithful (but not full) functor F d : K → Qd8 which in turn induces an
equivalence relation ∼ on K, setting κ ∼ κ′ if and only if Fd(κ) = Fd(κ′).

Recall that R
7×7
ant = {X ∈ R

7×7 | Xt = −X}. The object set R
7×7
ant ×K

is endowed with the structure of a category by declaring as morphisms
S : (X,κ) → (X ′, κ′) those K-morphisms S : κ→ κ′ satisfying S̃XS̃t = X ′,
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where S̃ =







S
1

S






. The functor Fdd : R

7×7
ant ×K → Q

dd
8 , given on ob-

jects by Fdd(X,κ) = H(R7, X,Y(κ)) and on morphisms by F dd(S) = H(S̃),
is dense and faithful (but not full). The functor F dd induces an equiva-
lence relation ∼ on R

7×7
ant × K, setting (X,κ) ∼ (X ′, κ′) if and only if

Fdd(X,κ) = Fdd(X ′, κ′).
The object set L = R

7×7
ant ×R

7×7
ant ×R

7×7
sympos (cf. notation preceding Propo-

sition 1.6) is endowed with the structure of a category by declaring as mor-
phisms S : (X,Y,D) → (X ′, Y ′, D′) those orthogonal matrices S ∈ Oπ7

(R7)
satisfying (SXSt, SY St, SDSt) = (X ′, Y ′, D′). Denote by Dc7 the full sub-
category of D7 formed by all objects (V, ξ, η) ∈ D7 such that η is composed.
The functor G7 : L → Dc7 , given on objects by G7(X,Y,D) = (R7, ξX , ηY D),
where ξX(v∧w) = vtXw and ηY D(v∧w) = (Y +D)π7(v∧w) for all (v, w) ∈
R

7×R
7, and acting on morphisms identically, is an equivalence of categories.

(This is the categorical version of [6, Theorem 10], [8, Theorem 8], emphasi-
zing the analogy to Proposition 1.5.) Moreover, the equivalence of categories
H : D → Q (Proposition 1.1) induces an equivalence of full subcategories
Hc7 : Dc7 → Q

c
8. Hence the composition F c = Hc7G7 is an equivalence of

categories F c : L → Qc8.
The functors Fd,Fdd and F c enable “in principle” the classification of

Qd8,Q
dd
8 and Qc8 to be attained by restricting these functors to cross-sections

for the equivalence relations induced on their respective domains. It is how-
ever still a very hard problem to present such cross-sections explicitly. Our
up to date knowledge in this respect is expressed in Theorem 6.1 (a)–(d)
below. In statement (a), the symbol [O] denotes the isoclass of the octonion
algebra.

Theorem 6.1 (i) The object class Q of all real quadratic division algebras
decomposes into the pairwise heteromorphic subclasses Q1, Q2, Q4 and Q8.
(ii) The subclasses Q1 and Q2 are classified by {R} and {C} respectively.
(iii) The subclass Q4 is classified by HG(C), whenever C is a cross-section
for K/' . Such a cross-section C is presented explicitly in [5],[11],[19].
(iv) The subclass Q8 contains the object classes Qd8,Q

dd
8 and Qc8 which admit

the following description.
(a) Qd8 ∩Q

c
8 = [O].

(b) The object class Qd8 is classified by Fd(Cd), whenever Cd is a cross-section
for K/∼ . There exists a cross-section Cd which is contained in the cross-
section C presented explicitly in [5],[11],[19]. A subset of such a cross-section
Cd is given by the 2-parameter family {(x1e1, 0, λ13) ∈ K | x1 ≥ 0 ∧ λ > 0}
of pairwise non-equivalent configurations. A complete cross-section Cd is not
known as yet.
(c) The object class Qdd8 is classified by Fdd(Cdd), whenever Cdd is a cross-
section for (R7×7

ant ×K)/∼ . Such a cross-section Cdd is not known as yet.
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(d) The object class Qc8 is classified by F c(Cc), whenever Cc is a cross-section
for L/' . A subset of such a cross-section Cc, forming a 49-parameter family
of pairwise heteromorphic objects in L, is presented explicitly in [6],[8]. A
complete cross-section Cc is not known as yet.

Proof. (i) is the (1,2,4,8)-Theorem of Bott [3] and Milnor [20], specialized
to real quadratic division algebras.
(ii) follows with Proposition 1.1 from the trivial fact that D0 is classified by
{({0}, o, o)} and D1 is classified by {(R, o, o)}.
(iii) The composed functor HG : K → Q4 is an equivalence of categories, by
Proposition 1.5 and Proposition 1.1.
(a) Let B ∈ [O]. Then B ∈ Qd8 because B→̃V(H), and B ∈ Qc8 because
I(B) = (V, o, π), where π is a vector product on V (cf. [18]).

Conversely, let B ∈ Qd8 ∩Q
c
8, with corresponding dissident triple I(B) =

(V, ξ, η). Since B is doubled, there exists a configuration κ = (x, y, d) ∈ K
such that B→̃Fd(κ) = VHG(κ). Applying Lemma 3.1(iv) we conclude that
(V, ξ, η)→̃(R7,X (x),Y(κ)). Since B is both doubled and composed, Y(κ)
is both doubled and composed which in turn implies that κ = (0, 0, 13),
by Proposition 4.6. Hence (R7,X (x),Y(κ)) = (R7, o, π7), and therefore
B →̃ HI(B) →̃ H(R7, o, π7) →̃ O.
(b) The first statement is due to the density of the functor F d : K → Qd8.
The second statement is explained by the trivial fact that κ→̃κ′ only if
κ ∼ κ′. The third statement is an easy consequence of the combined Propo-
sitions 1.1, 5.3, 5.5 and 5.6.
(c) The functor Fdd : R

7×7
ant ×K → Q

dd
8 is dense.

(d) The functor F c : L → Qc8 is an equivalence of categories. 2

7 Epilogue

The problem of constructing and, ultimately, classifying all real division
algebras originated in the discovery of the quaternion algebra H (Hamilton
1843) and the octonion algebra O (Graves 1843, Cayley 1845). The once
vivid interest in this problem was severely inhibited by theorems of Frobenius
[12] and Zorn [23], asserting that the associative real division algebras are
classified by {R,C,H} and the alternative real division algebras are classified
by {R,C,H,O}. Hopf’s contribution [15] awoke the interest of topologists
and launched a new phase in this subject, culminating in Bott and Milnor’s
(1,2,4,8)-Theorem [3],[20] and Adams’s Formula [1] for the span of S

n−1.
Real division algebras seemed to have been wrested from algebraists for
good. Many a mathematician interpreted the (1,2,4,8)-Theorem as the final
word on the subject, overlooking that the triumphant progress of topology
had not produced a single new example of a real division algebra. The
erroneous view that {R,C,H,O} classifies all real division algebras spread
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and became “folklore knowledge”, documented even in print in a widely use
and otherwise highly reputed textbook (cf. [10]).

Attempting to recover the algebraic view of real division algebras by ge-
neralizing the results of Frobenius and Zorn, it is natural to aspire the clas-
sification of all power-associative real division algebras. These coincide with
the quadratic real division algebras, in view of [5, Lemma 5.3]. An approach
to the latter was opened by Osborn’s Theorem [21, p. 204] which, however,
took effect only hesitantly. Its true impact was obscured for decades by
applications of Osborn [21] and Hefendehl-Hebeker [13],[14] which partly
contain a misleading flaw (cf. [8]) and partly conceal the conceptual core
of the matter in technical complications (cf. [11]). Osborn’s Theorem was
rediscovered by Dieterich [6] and it reappears, in categorical formulation, as
our Proposition 1.1. In this shape it forms the foundation for most of the
present article.

Shafarevich [22, p. 201] suggests the structure of a real division algebra
as a test problem for a possible future understanding of various types of
algebras from a unified point of view. It is our intention to present some
first fragments of a solution to this test problem.
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